
Instructor Introduction
-
KAIST 산업및시스템공학과 문일철 교수
KAIST 산업및시스템공학과 교수
KAIST 김재철AI대학원 겸임교수
KAIST 항공우주공학과 겸임교수
KAIST 안보융합연구원 겸임교수
한국인공지능학회 교육이사
Lecture plan
강의
-
CHAPTER 1 Data Handling and Descriptive Statistics
- 1-1. Value chain of datascience programming
- 1-2. Dataset
- 1-3. Dataset Read with Pandas
- 1-4. Histogram and Bin size selection
- 1-5. Descriptive Statistics
- 1-6. Unbiased Estimator
- 1-7. Matplotlib
- 1-8. Pivot Table
- Lecture Note Chapter 1
- Quiz 1
-
CHAPTER 2 Distribution and Parameter Inference
- 2-1. detour - Bin Size Selection and Model Complexity
- 2-2. Distribution
- 2-3. Normal Distribution
- 2-4. Gamma Distribution and Moment Statistics
- 2-5. Method of Moments
- 2-6. Method of Moments - Gamma Dist
- 2-7. Result from Method of Memoments
- 2-8. MLE of Gaussian Distribution
- 2-9. MLE of Gamma Distribution
- 2-10. Parameter Estimation by SciPy
- Lecture Note Chapter 2
- Quiz 2
-
CHAPTER 3 Confidence Interval and Bootstrapping
- 3-1. Sample and Population
- 3-2. Point Estimate on Multiple Samples
- 3-3. Central Limit Theorem
- 3-4. Properties of Expectation
- 3-5. Distribution of Sample Statistics
- 3-6. Confidence Interval of Normal Distribution
- 3-7. Bootstrapping
- 3-8. Implementation of Bootstrapping
- 3-9. Confidence Interval By SciPy
- Lecture Note Chapter 3
- Quiz 3
-
CHAPTER 4 Multivariate Distribution and Covariance
- 4-1. Multivariate Gaussian Distribution
- 4-2. Samples of Multivariate Gaussian Distribution
- 4-3. Covariance Matrix
- 4-4. Pearson Correlation
- 4-5. Scatter Plot Matrix
- 4-6. Kernel Density Estimation
- 4-7. Correlation Table
- Lecture Note Chapter 4
- Quiz 4
-
CHAPTER 5 Linear Regression
- 5-1. Deterministic Relation
- 5-2. Estimation of Dependent Variable
- 5-3. Estimating the parameter, beta
- 5-4. Parameter Estimation by Least Square
- 5-5. Implementation of Simple Linear Regression
- 5-6. Evaluation of Linear Regression
- 5-7. R-Square
- Lecture Note Chapter 5
- Quiz 5
-
★강의 수강 후 의견을 부탁드리겠습니다.★
- 교수님 강의에 대한 별점을 매겨주세요. 여러분의 의견이 많은 도움이 됩니다:D
Additional Info
본 강좌는 Python3 를 기반으로 진행되는 강좌 입니다.
기초적인 내용부터 시작하기 때문에, 누구나 수강할 수 있는 강좌입니다.
-----------------------------------------------------------------------------------------
* 강좌 수료 기준 충족 시 수료증을 제공합니다:)