
Instructor Introduction
-
KAIST 산업및시스템공학과 문일철 교수
Lecture plan
강의
-
CHAPTER 1 Linear Regression 2
- 1-1. Matrix Representation of Data1-1
- 1-2. Least Square Pricinple of Multivariate Linear Regression
- 1-3. Implementation of Multiple Linear Regression
- 1-4. Results of Multiple Linear Regression
- 1-5. Implementation of Evaluation on Multiple Linear Regression
- 1-6. Implementation of Cross Validation
- 1-7. Variable Selection
- 1-8. Implementation of Simple Variable Selection
- 1-9. Informaiton Criterion
- 1-10. Stepwise Feature Selection
- Lecture Note Chapter 1
- Quiz 1
-
CHAPTER 2 Linear Regression 3
- 2-1. API for Linear Regression
- 2-2. Linear Regression with Scikit-Learn
- 2-3. Variable Selection with Scikit-Learn
- 2-4. Additive Regression
- 2-5. Implementation of Additive Regression
- 2-6. Performance of Additive Regression
- Lecture Note Chapter 2
- Quiz 2
-
CHAPTER 3 Machine Learning Frameworks
- 3-1. Problems of Linear Regression Inference
- 3-2. Linear Regression Revisited
- 3-3. Utilizing Automatic Gradient Calculation
- 3-4. PyTorch
- 3-5. Instantiation of PyTorch Data Structure
- 3-6. Dataset and Dataloader of PyTorch
- 3-7. Basic Tensor Operations of PyTorch
- 3-8. Utilization of GPU for Matrix Calculation
- 3-9. Memory Utilization Status
- Lecture Note Chapter 3
- Quiz 3
-
CHAPTER 4 Automatic Gradient Calculation
- 4-1. Scalar Gradient Calculation
- 4-2. Steps of Gradient Calculation by PyTorch
- 4-3. PyTorch grad
- 4-4. Automatic Parameter Update by PyTorch
- 4-5. Case Study of Optimization by PyTorch
- 4-6. Linear Regression by Gradient Method in PyTorch
- Lecture Note Chapter 4
- Quiz 4
-
CHAPTER 5 Dimension Reduction
- 5-1. Examples of High Dimensional Data
- 5-2. Concept of Dimension Reduction
- 5-3. Projection to Preserve Information
- 5-4. Distance from x to x_v
- 5-5. Total Distance from x to x_v
- 5-6. Optimization for Dimension Reduction
- 5-7. Iterative Dimension Reduction
- 5-8. Iterative Dimension Reduction
- Lecture Note Chapter 5
- Quiz 5
-
★강의 수강 후 의견을 부탁드리겠습니다.★
- 교수님 강의에 대한 별점을 매겨주세요. 여러분의 의견이 많은 도움이 됩니다:D
Additional Info
본 강좌는 Python3 를 기반으로 진행되는 강좌 입니다.
기초적인 내용부터 시작하기 때문에, 누구나 수강할 수 있는 강좌입니다.
-----------------------------------------------------------------------------------------
* 강좌 수료 기준 충족 시 수료증을 제공합니다:)